Rigidité diélectrique et tension de claquage de l’huile de transformateur

En pratique, pour évaluer les propriétés isolantes des huiles de transformateur, on utilise un indicateur tel que la rigidité diélectrique. Elle est souvent assimilée à la tension de claquage, mais leurs valeurs numériques ne sont pas égales. La tension de claquage est la tension minimale appliquée au diélectrique, entraînant sa disruption. La rigidité diélectrique est égale au rapport de la tension de claquage et de la distance entre les électrodes. Rien ne permet de confirmer le lien direct entre la tension de claquage et la conductivité spécifique, mais sa sensibilité similaire à la présence d’impuretés mécaniques est évidente. La rigidité diélectrique diminue par la suite de modifications d’humidité dans un diélectrique et la présence des impuretés mécaniques. Il convient de noter que les facteurs énumérés n’ont aucune influence sur la conductivité électrique des liquides.

Rigidité diélectrique: principaux facteurs d’influence

Les huiles de transformateur pures ne contiennent généralement pas d’eau ni d’autres impuretés, ce qui leur assure une tension de claquage suffisante (supérieure à 60 kV). Ce paramètre est déterminé à l’aide d’électrodes de cuivre plates à bords arrondis, espacées de 2,5 mm. La rigidité diélectrique n’est pas constante pour le matériau. Dans le cas de tension de choc, la présence d’impuretés n’a presque aucun effet sur la rigidité diélectrique de l’huile de transformateur. Selon certaines théories, le mécanisme de disruption sous tension de choc (impulsionnelle) et d’exposition prolongée est d’une nature différente. Sous tension impulsionnelle, la rigidité diélectrique est considérablement plus élevée que dans le cas d’une exposition relativement longue d’une tension de 50 Hz. Par conséquent, les décharges de commutation et atmosphériques présentent un danger relativement faible. La hausse de la température de 0 à 70 ºC entraîne une augmentation de la rigidité diélectrique de l’huile de transformateur. Ce phénomène s’explique par l’élimination de l’humidité des diélectriques liquides, sa transition d’un état d’émulsion à un état dissous et la diminution de la viscosité de l’huile. Le processus de claquage est fortement influencé par les gaz dissous. Lorsque l’intensité du champ électrique est inférieure à celle du claquage, on peut observer la formation de bulles sur les électrodes. La rigidité diélectrique de l’huile de transformateur diminue si elle n’est pas dégazée alors que la pression baisse. On indique trois cas dans lesquels la tension de claquage ne dépend pas de la pression:
  1. Le fluide diélectrique est soigneusement dégazé.
  2. La présence de tension de choc (indépendamment de la présence de pollution et de gaz).
  3. Haute pression (environ 10 MPa).
Il a été prouvé que la tension de claquage de l’huile de transformateur n’est pas déterminée par la teneur totale en eau, mais par sa concentration à l’état d’émulsion. On constate la formation de l’eau émulsifiée et la diminution de la rigidité diélectrique dans les huiles de transformateur contenant de l’eau dissoute, dans le cas d’une brusque baisse de la température ou de l’humidité relative de l’air ou en remuant l’huile par la désorption de l’eau, adsorbée sur la surface d’un récipient . Si le récipient en verre est remplacé par celui en polyéthylène, cela résulte en diminution de la quantité d’eau émulsifiée, désorbée lorsque l’huile serait remuée de la surface. On observe l’augmentation de la rigidité diélectrique. La vidange prudente du liquide diélectrique du récipient en verre, sans agitation, permet d’obtenir une huile de haute rigidité diélectrique. La présence de substances polaires, à bas et haut point d’ébullition, est à peine valable pour la conductivité et la rigidité diélectrique du liquide isolant. On observe le phénomène de la conductibilité électrophorétique lorsque des solutions ou des émulsions colloïdales aux gouttelettes de très petite taille sont formées dans l’huile de transformateur. Si de telles solutions sont d’un point d’ébullition bas, la rigidité diélectrique diminue, si le point est haut – ne change pratiquement pas.

Théories de la disruption diélectrique

Il existe à présent un important corpus de matériel expérimental sur le sujet de la disruption des diélectriques liquides, mais ça n’a rien donné à élaboration d’une théorie unifiée de sa provenance. Actuellement, trois groupes de théories sont considérés les plus réels:
  1. thermique, qui explique la formation d’un canal de gaz à la suite de l’ébullition du diélectrique lui-même dans des lieux d’hétérogénéité de champ local (bulles d’air, etc.).
  2. gaz, selon lequel le claquage est causé par la présence de bulles de gaz, adsorbées sur les électrodes ou dissoutes dans l’huile;
  3. chimique, qui explique le claquage résultant de réactions chimiques qui se produisent dans le diélectrique lorsqu’il est exposé à une décharge électrique dans une bulle de gaz.
Il n’est pas difficile de remarquer, – tous les trois théories sont unies par la reconnaissance du fait que la disruption de l’huile se produit dans le canal à vapeur, formé par l’évaporation du diélectrique liquide lui-même. La valeur de tension de claquage est influencée par la présence d’eau liée. Lors de la déshydratation sous vide de l’huile de transformateur on observe trois stades:
  1. une brusque hausse de la tension de claquage, correspondant à l’élimination de l’eau émulsifiée;
  2. la tension de claquage varie peu et se fixe à 60 kV. A ce stade, se produit l’élimination de l’eau dissoute et celle faiblement liée;
  3. augmentation lente de la tension de claquage due à l’élimination de l’eau liée.