GlobeCore

  • Home
  • Products
    • Oil Regeneration
      • CMM-6RL Oil Regeneration Unit
      • CMM-10RL Transformer Oil Regeneration Plant
      • CMM-12R Oil Regeneration Systems
      • CMM-12R Oil Regeneration System (With Activated Bauxite)
      • CMM-8RSL/4000 Transformer Oil Regeneration Plant (With Fuller’s Earth)
      • USB-6 Oxidation Inhibitor injection unit
      • СММ-0,001U Laboratory Oil Filtration Unit
    • Oil Purification & Degassing Machines
      • CMM-0.6L Oil Degassing & Filtration Cart
      • СММur-1L mobile oil plant
      • CMM-1.0LT Transformer Oil Purification Unit
      • CMM-1H Oil Processing Unit
      • CMM-2.2LT Industrial Oil Purification Unit
      • CMM-4,0T Turbine oil filtration
      • CMM-4,0LT Transformer Oil Purification Unit
      • CMM-4/7 portable oil degassing unit
      • CMM-6LT Industrial Oil Purification Unit
      • CMM-6/7 Degassing Unit
      • CMM-8LT Oil Processing Unit
      • CMM-10 — Transformer Oil Purification Machine
      • CMM-15 Oil Degassing Plant
    • Oil Filtration Machines
      • CMM-1,0CF Unit for Removal of Water from Oil
      • CMM-2,0CF Unit for Removal of Water from Oil
      • CMM-1,2Fr Industrial oils filtration unit with self-cleaning filters
      • CMM-4,0F Oil filtration unit
    • Oil Drying Unit
      • ZP-130 Sorbent Cartridges
      • ZP-260 Sorbent Cartridges
    • Oil Heating
      • PPM Inline Oil Heater. Stream oil heating
    • Fuel Polishing
      • TOR-1 diesel fuel moisture content tester
      • CMM-6RL dark diesel fuel polishing machine
      • CMM-6RL dark heating fuel polishing machine
      • CMM-6RL low-viscosity marine fuel polishing machine
    • Online Transformer Dry-Out Systems
      • CMM-260C Online Transformer Dry-Out System
      • TOR-4 Online Transformer Dry-Out System
    • Online Transformer Monitoring Systems
      • TOR-5 Online Transformer Monitoring System
    • Transformer Maintenance
      • Mojave Heat (Sukhovey): Hot Air Dryer Unit
      • UVV Vacuum Cold Trap
      • US-6S Transformer vacuum furnace
      • LFD Low Frequency Heating Device
      • BV-3000 Transformer Evacuation System
      • BV-5000 Transformer Evacuation System
      • UVD Vacuum Oil Filling Unit
      • UVD-1000 Oil Filling and Transportation System
      • TSS Transformer Safety System
      • CMM-6RL Oil Regeneration Unit
      • CMM-10RL Transformer Oil Regeneration Plant
      • CMM-12R Oil Regeneration Systems
    • Vacuum Transformer Drying Ovens
      • US-6S Transformer vacuum furnace
    • Sorbent Processing
      • ZP-130 Sorbent Cartridges
      • ZP-260 Sorbent Cartridges
    • Instruments – Transformer Oil Testers
      • TOR-1 Oil Moisture Meter
      • TOR-2 Hydrogen and Moisture Analyzer for Transformer Oil Monitoring
      • TOR-3 (TOR-3 SL) Oil Tan Delta Tester
      • TOR-6 Transformer Oil Moisture and Particles Tester
      • TOR-7 Universal Transformer Oil Tester (moisture, gases, solid particles)
      • TOR-8 tester for residual gas content of insulating oil
      • TOR-60 (TOR-60 SL) Breakdown Voltage Tester
      • TOR-80 (TOR-80 LSL) Breakdown Voltage Tester
      • TOR-80A (TOR-80 ASL) Transformer Oils Breakdown Voltage Tester with Battery
      • TOR-100 (TOR-100 SL) Breakdown Voltage Tester
    • Wind Turbine Service
      • CMM-G wind turbine gearbox oil changer (with dimensions adapted to the customer’s trailer ones)
      • CMM-G Wind Turbine Gearbox Oil Changer
      • CMM-GL Wind Turbine Gearbox Oil Changer
      • CMM-0.6L Oil Degassing & Filtration Cart
      • CMM-4,0T Turbine oil filtration
    • Medical Equipment Maintenance
      • CMM-0.6 X-ray Transformer Oil Purifier
      • AVSk-150 Hospital Wastewater Treatment Complex
    • Blending systems
      • USBL-1 Laboratory Blending System
      • USB-1 Fuel oil blending system
      • USB-5 high-speed mixing unit for production of sanitizers (0.15 – 0.3 m3/h)
      • USB-5 high-speed mixing unit for production of sanitizers (1.1 m3/cycle)
      • USB-6 Impeller Stirrer
      • Colloid Mill
      • Vortex Layer Devices
    • Colloid Mill
      • Colloid mills for food industry
        • CLM-100.3 Colloid mill
      • Colloid mills for bitumen emulsion production
        • CLM-0.25.1 Laboratory colloid mill
        • CLM-2/4 Colloid mill
        • CLM-16/25 Colloid mill
      • Colloid mills for bitumen modification
        • CLM-8/16 Colloid mill
        • CLM-10/20 Colloid mill
        • CLM-40.2 Colloid Mill
      • Colloid mills for different applications
        • CLM-100.2 Colloid Mill
        • CLM-200.2 Colloid Mill
    • Vortex Layer Devices
      • AVS-100 Mixing Machine. Vortex Layer Device
      • AVS-150 Chemical Mixing Machine
      • AVSp-100 Vortex Layer Device (Semi-Automated)
      • AVSp-150 vortex layer device (semi-automated)
      • AVSk-150 Wastewater Treatment Complex
    • Bitumen emulsion plant, Bitumen Emulsion Production
      • CLM-0.25.1 Laboratory colloid mill
      • USB-2 Bitumen emulsion unit 2 m3/hour production capacity
      • USB-2 Bitumen emulsion plant 8 m3/hour production capacity
      • FB Bitumen filter
      • USB-6 Impeller Stirrer
    • Bitumen Modification Plant. Modified Bitumen Production
      • USB-3 Bitumen modification laboratory system
      • USB-3 Continuous Bitumen Modification Unit (12 m3/hour)
      • USB-3 Bitumen modification unit 16 m3/hour production capacity
      • USB-4 Modified bitumen collection tank (USB-3)
      • USB-6 Impeller Stirrer
    • Laboratory system for Bitumen Emulsion Samples
      • CLM-0.25.1 Laboratory colloid mill
      • CLM-100.1 Bitumen Emulsion Laboratory System
      • USB-3 Bitumen modification laboratory system
    • Biodiesel Equipment
      • USB-1L Biodiesel laboratory equipment
      • USB-1 Biodiesel equipment
        • Filters
          • The filter GC Fine with a filtration factor β = 4000
        • Vacuum Pumps
          • GC Roots Vacuum Pumps
          • مضخات التفريغ GC Vane (مضخات دعم)
    • Custom Equipment
      • CMM-4R TRANSFORMER OIL REGENERATION MACHINE
      • CMM-1 MOBILE OIL PLANT
      • CMM-2.2 MOBILE OIL PLANT
      • CMM-4 MOBILE UNIT FOR POWERED TRANSFORMER OIL PROCESSING
      • CMM-12A DEGASSING UNIT
      • CMM-1CO CABLE OIL DEGASSING UNIT
      • CMM-5M INDUSTRIAL OIL PURIFICATION MACHINE
      • CMM-8RP Sorbent Reactivation Unit
      • BDK-3 CATALYTIC CONVERTER
      • CMM-600CF TRANSFORMER OIL FILTRATION AND REFILLING MACHINE
      • SN-1 PUMP ASSEMBLY
      • SBE-30 BITUMEN EMULSION COLLECTION TANK (UVB-1)
      • UVB-1 BITUMEN EMULSION UNIT 1 M3/HOUR PRODUCTION CAPACITY
      • UVB-1 EXTENSION 1 M3/HOUR PRODUCTION CAPACITY
      • INDUSTRIAL MIXER – COLLOID MILLS CLM-4 SMALL
      • BIG COLLOIDAL MILL CLM-18 GRINDING MACHINE
      • INDUSTRIAL MILL – GIANT COLLOIDAL MILL CLM-22
      • CMM-0.6 Clean Marine Oil Degassing Cart
      • Compressed Air Supply Unit UOV
    • Accessories & Components
  • Dealers
  • Tech School
    • Webinar Registration
  • News & Articles
  • History
  • Reviews
  • AskMe
  • Contacts
  • EN
    • FR
    • ES
    • PT
    • TH
    • VN
    • CN
    • HA
    • AZ
    • JP
    • DE
    • RO
    • Hun
    • Arabic
    • Ind
GlobeCore / Oil Regeneration / Industrial oils regeneration

Industrial oils regeneration

Industrial oils regeneration

Long use of industrial and motor oil causes accumulation of oxidation products and other contaminants. Together these substances adversely affect oil performance, drastically reducing the oil’s quality. To avoid failures of costly equipment, old used oils should be changed with new. Old oil is collected for special regeneration processing. Such operations saves oil for further use without the need to dispose of it. The environmental benefits of oil regeneration are obvious.

The first method that comes to mind in regard to oil regeneration is the recycling of waste industrial oil with crude oil in refineries. However, this is hardly possible due to additives, which improve oil’s performance. These additives may have a detrimental impact on the refinery’s equipment.Various regeneration processes may yield two or three basic oil fractions. By injecting additives into these fractions and blending them, one can produce sellable oils, coolants and lubricants or plastic lube substances.Literature gives some data on average yield of regenerated industrial oil from waste oil. For instance, an oil containing 2% to 4% solid particles and water and up to 10% fuel may yield 70% to 85% reclaimed oil. More specific numbers depend on the chosen reclamation method.

Regeneration of industrial oil includes several operations, based on various physical, chemical, and combined processes.Regeneration aims to remove contamination and aging products from oil. The following sequence is recommended for regeneration:

  • Mechanical methods to remove free water and solid particles;
  • Thermal methods for evaporation and vacuum distillation;
  • Physical and chemical (coagulation and adsorption).

If, after the above methods are applied, the quality of the oil is still unsatisfactory, the use of more complex chemical equipment is required. Apparently, complex process equipment involves higher costs, which are not always justified or reasonable.The physical method allows to remove microscopic water droplets and solid particles, as well as some coke inclusions. Evaporation allows to remove volatile components. Other physical methods include subjecting oil to various fields: electric, gravity and magnetic, as well as centrifugal force and vibration. These also include purification of waste industrial oil by various heat and mass exchange processes, which remove highly volatile fractions, hydrocarbon oxidation products and water.The simplest method of oil purification is settling. The point is that solid particles and water settle naturally by the force of gravity.Settling can only be used as a stand alone method is the degree of contamination is insignificant. Otherwise it is only a preliminary stage, a preparation for deeper processes of filtration or centrifuge purification.

The settling method is limited by the duration of settling of particles, and the fact that only the largest particles, 50 to 100 micron, can be removed. Filtration, mentioned above, means removal of solid particles and resin compounds from industrial oil by mesh or porous filter media. To increase quality of the output product, the number of filters is increased for finer filtration.

Centrifuge is a well known method, which requires special equipment: the centrifuge. It facilitates removal of water and solid particles from the oil. The method involves separation of various fractions of oil under the influence of the centrifugal force.

Combined physical and chemical oil regeneration methods hold a place of their own; they include coagulation, selective solution and adsorption. Ion-exchange method is a variation of adsorption process.

Coagulation is a process of increasing the size of contaminant particles, which can be present in the oil in finely dispersed or colloid state. Practically this is done by introducing special coagulants into the oil, such as surfactants, which have no electrolytic properties, carious organic or non-organic electrolytes, as well as high molecular hydrophilic compounds and colloid solutions of surfactants.The duration of coagulation in used oil is 20 to 30 minutes on average. It depends on type and quantity of the coagulant, duration of contact with liquid, process temperature, efficiency of agitation etc.

After the process is complete, the enlarged particles can be removed from the oil, using settling, filtration or centrifuge separation. Adsorption also involves the use of special adsorbent substances. They can trap contaminants on the surface of the granules or inside the capillaries inside the granules. Adsorbents may come from various sources: natural (bauxites, natural zeolite, bleaching clay) or artificial (aluminum oxide, synthetic zeolite, alumina silicates and silica gels).There are several types of adsorption purification.

Contact method involves mixing of oil with small particles of adsorbent. The draw back is the need to dispose of a large amount of the latter, posing an environmental hazard.Percolation, when the product flows through the sorbent, also has drawbacks. One of the problems is that the sorbent, most often, silica gel, is a quite expensive material.Countercurrent method involves movement of sorbent and oil in opposing directions.

GlobeCore offers equipment which utilizes special adsorbent filters. These filters can be reactivated. The CMM-4F plants, for instance, purifies industrial oils from free and solved water, solid particles, water soluble acids and alkali. The viscosity of the oil for processing must not exceed 70 cSt at 50 oC.The unit may be used for installation, repairs and operation of oil filled equipment.

Depending on the task, the CMM-4F may be equipped with filter element for solid particles only, or one which also allows for adsorption of free and solved water.Ion exchange purification occurs due to the ability of ion exchange resins to capture foreign materials. Ion exchange resins look like solid hygroscopic gels. They are produced by polymerization and polycondensation of water-insoluble organic compounds and hydrocarbons.Waste industrial oil is mixed with 0.3 – 2 mm ionite granules.

Percolation is another option, where oil passes through columns filled with ion exchange resin. Contaminant ions replace the ions in the resin. The resin must be flushed with solvent, dried or activated by sodium hydroxide solution after the process. Unfortunately, ion exchange resins cannot remove tar from the oil, however, they remove acidic contaminants quite well.Selective purification is solution of separate contaminant in the oil: polycyclic hydrocarbons with short side chains, oxygen, sulfur and nitrogen compounds. Some of the possible solvents are nitrobenzol, phenol, furfurol, various spirits, acetone, methyl ketone and other like chemicals. A selective purification plant must be equipped with evaporators for distillation of the solvent.Treating of the oil with propane is another case of selective purification. The effect is that hydrocarbons dissolve in oil, while asphaltenes and tar precipitate and settle.

Chemical methods involve reaction between the reagents introduced into the oil and contaminants. The reactions result in compounds which can easily be removed form the oil. Some of the reagents are acids, alkali, oxides, carbides and metal hydrides.Hydrogen purification, sulfuric acid purification and sodium purification are some of the most widely used chemical methods.The use of sulfuric acid is prevalent. However, it results in formation of large amounts of acid tar, which is difficult to dispose of and poses a significant environmental hazard. Sulfuric acid also cannot remove polycyclic arenes with highly toxic chlorine compounds.From environmental viewpoint, the safest is hydrogen purification; the drawback being the large amounts of hydrogen consumed in the process.Metal sodium is used for removal of tar, oxidation products, highly toxic chlorine compounds and additives from the oil. The results of the chemical reactions are polymers and salts of sodium with high boiling temperature, which allows to distillate the oil.

    Leave Your Request


    • Home
    • Products
    • Dealers
    • Tech School
    • Contacts

    ® Copyright by - 2025 © GlobeCore

    GlobeCore, Sadovskogo 14, Poltava, Ukraine, 36034

    This website uses cookies to improve your experience. By continuing to browse, you agree to our use of cookies. Read more in our Privacy Policy.