GlobeCore

  • Home
  • Products
    • Oil Regeneration
      • CMM-6RL Oil Regeneration Unit
      • CMM-10RL Transformer Oil Regeneration Plant
      • CMM-12R Oil Regeneration Systems
      • CMM-12R Oil Regeneration System (With Activated Bauxite)
      • CMM-8RSL/4000 Transformer Oil Regeneration Plant (With Fuller’s Earth)
      • USB-6 Oxidation Inhibitor injection unit
      • СММ-0,001U Laboratory Oil Filtration Unit
    • Oil Purification & Degassing Machines
      • CMM-0.6L Oil Degassing & Filtration Cart
      • СММur-1L mobile oil plant
      • CMM-1.0LT Transformer Oil Purification Unit
      • CMM-1H Oil Processing Unit
      • CMM-2.2LT Industrial Oil Purification Unit
      • CMM-4,0T Turbine oil filtration
      • CMM-4,0LT Transformer Oil Purification Unit
      • CMM-4/7 portable oil degassing unit
      • CMM-6LT Industrial Oil Purification Unit
      • CMM-6/7 Degassing Unit
      • CMM-8LT Oil Processing Unit
      • CMM-10 — Transformer Oil Purification Machine
      • CMM-15 Oil Degassing Plant
    • Oil Filtration Machines
      • CMM-1,0CF Unit for Removal of Water from Oil
      • CMM-2,0CF Unit for Removal of Water from Oil
      • CMM-1,2Fr Industrial oils filtration unit with self-cleaning filters
      • CMM-4,0F Oil filtration unit
    • Oil Drying Unit
      • ZP-130 Sorbent Cartridges
      • ZP-260 Sorbent Cartridges
    • Oil Heating
      • PPM Inline Oil Heater. Stream oil heating
    • Fuel Polishing
      • TOR-1 diesel fuel moisture content tester
      • CMM-6RL dark diesel fuel polishing machine
      • CMM-6RL dark heating fuel polishing machine
      • CMM-6RL low-viscosity marine fuel polishing machine
    • Online Transformer Dry-Out Systems
      • CMM-260C Online Transformer Dry-Out System
      • TOR-4 Online Transformer Dry-Out System
    • Online Transformer Monitoring Systems
      • TOR-5 Online Transformer Monitoring System
    • Transformer Maintenance
      • Mojave Heat (Sukhovey): Hot Air Dryer Unit
      • UVV Vacuum Cold Trap
      • US-6S Transformer vacuum furnace
      • LFD Low Frequency Heating Device
      • BV-3000 Transformer Evacuation System
      • BV-5000 Transformer Evacuation System
      • UVD Vacuum Oil Filling Unit
      • UVD-1000 Oil Filling and Transportation System
      • TSS Transformer Safety System
      • CMM-6RL Oil Regeneration Unit
      • CMM-10RL Transformer Oil Regeneration Plant
      • CMM-12R Oil Regeneration Systems
    • Vacuum Transformer Drying Ovens
      • US-6S Transformer vacuum furnace
    • Sorbent Processing
      • ZP-130 Sorbent Cartridges
      • ZP-260 Sorbent Cartridges
    • Instruments – Transformer Oil Testers
      • TOR-1 Oil Moisture Meter
      • TOR-2 Hydrogen and Moisture Analyzer for Transformer Oil Monitoring
      • TOR-3 (TOR-3 SL) Oil Tan Delta Tester
      • TOR-6 Transformer Oil Moisture and Particles Tester
      • TOR-7 Universal Transformer Oil Tester (moisture, gases, solid particles)
      • TOR-8 tester for residual gas content of insulating oil
      • TOR-60 (TOR-60 SL) Breakdown Voltage Tester
      • TOR-80 (TOR-80 LSL) Breakdown Voltage Tester
      • TOR-80A (TOR-80 ASL) Transformer Oils Breakdown Voltage Tester with Battery
      • TOR-100 (TOR-100 SL) Breakdown Voltage Tester
    • Wind Turbine Service
      • CMM-G wind turbine gearbox oil changer (with dimensions adapted to the customer’s trailer ones)
      • CMM-G Wind Turbine Gearbox Oil Changer
      • CMM-GL Wind Turbine Gearbox Oil Changer
      • CMM-0.6L Oil Degassing & Filtration Cart
      • CMM-4,0T Turbine oil filtration
    • Medical Equipment Maintenance
      • CMM-0.6 X-ray Transformer Oil Purifier
      • AVSk-150 Hospital Wastewater Treatment Complex
    • Blending systems
      • USBL-1 Laboratory Blending System
      • USB-1 Fuel oil blending system
      • USB-5 high-speed mixing unit for production of sanitizers (0.15 – 0.3 m3/h)
      • USB-5 high-speed mixing unit for production of sanitizers (1.1 m3/cycle)
      • USB-6 Impeller Stirrer
      • Colloid Mill
      • Vortex Layer Devices
    • Colloid Mill
      • Colloid mills for food industry
        • CLM-100.3 Colloid mill
      • Colloid mills for bitumen emulsion production
        • CLM-0.25.1 Laboratory colloid mill
        • CLM-2/4 Colloid mill
        • CLM-16/25 Colloid mill
      • Colloid mills for bitumen modification
        • CLM-8/16 Colloid mill
        • CLM-10/20 Colloid mill
        • CLM-40.2 Colloid Mill
      • Colloid mills for different applications
        • CLM-100.2 Colloid Mill
        • CLM-200.2 Colloid Mill
    • Vortex Layer Devices
      • AVS-100 Mixing Machine. Vortex Layer Device
      • AVS-150 Chemical Mixing Machine
      • AVSp-100 Vortex Layer Device (Semi-Automated)
      • AVSp-150 vortex layer device (semi-automated)
      • AVSk-150 Wastewater Treatment Complex
    • Bitumen emulsion plant, Bitumen Emulsion Production
      • CLM-0.25.1 Laboratory colloid mill
      • USB-2 Bitumen emulsion unit 2 m3/hour production capacity
      • USB-2 Bitumen emulsion plant 8 m3/hour production capacity
      • FB Bitumen filter
      • USB-6 Impeller Stirrer
    • Bitumen Modification Plant. Modified Bitumen Production
      • USB-3 Bitumen modification laboratory system
      • USB-3 Continuous Bitumen Modification Unit (12 m3/hour)
      • USB-3 Bitumen modification unit 16 m3/hour production capacity
      • USB-4 Modified bitumen collection tank (USB-3)
      • USB-6 Impeller Stirrer
    • Laboratory system for Bitumen Emulsion Samples
      • CLM-0.25.1 Laboratory colloid mill
      • CLM-100.1 Bitumen Emulsion Laboratory System
      • USB-3 Bitumen modification laboratory system
    • Biodiesel Equipment
      • USB-1L Biodiesel laboratory equipment
      • USB-1 Biodiesel equipment
        • Filters
          • The filter GC Fine with a filtration factor β = 4000
        • Vacuum Pumps
          • GC Roots Vacuum Pumps
          • مضخات التفريغ GC Vane (مضخات دعم)
    • Custom Equipment
      • CMM-4R TRANSFORMER OIL REGENERATION MACHINE
      • CMM-1 MOBILE OIL PLANT
      • CMM-2.2 MOBILE OIL PLANT
      • CMM-4 MOBILE UNIT FOR POWERED TRANSFORMER OIL PROCESSING
      • CMM-12A DEGASSING UNIT
      • CMM-1CO CABLE OIL DEGASSING UNIT
      • CMM-5M INDUSTRIAL OIL PURIFICATION MACHINE
      • CMM-8RP Sorbent Reactivation Unit
      • BDK-3 CATALYTIC CONVERTER
      • CMM-600CF TRANSFORMER OIL FILTRATION AND REFILLING MACHINE
      • SN-1 PUMP ASSEMBLY
      • SBE-30 BITUMEN EMULSION COLLECTION TANK (UVB-1)
      • UVB-1 BITUMEN EMULSION UNIT 1 M3/HOUR PRODUCTION CAPACITY
      • UVB-1 EXTENSION 1 M3/HOUR PRODUCTION CAPACITY
      • INDUSTRIAL MIXER – COLLOID MILLS CLM-4 SMALL
      • BIG COLLOIDAL MILL CLM-18 GRINDING MACHINE
      • INDUSTRIAL MILL – GIANT COLLOIDAL MILL CLM-22
      • CMM-0.6 Clean Marine Oil Degassing Cart
      • Compressed Air Supply Unit UOV
    • Accessories & Components
  • Dealers
  • Tech School
    • Webinar Registration
  • News & Articles
  • History
  • Reviews
  • AskMe
  • Contacts
  • EN
    • FR
    • ES
    • PT
    • TH
    • VN
    • CN
    • HA
    • AZ
    • JP
    • DE
    • RO
    • Hun
    • Arabic
    • Ind
GlobeCore / Oil Testing / Transformer oil dielectric loss testing equipment

Transformer oil dielectric loss testing equipment

Transformer Tan Delta

Transformer oil dielectric loss testing equipment is used both at the stage of checking the quality of oil before feeding it into the transformer and during the use of oil. In this article, we will discuss what is meant by the dielectric loss tangent, what parameters it depends on, what algorithm is applied to determine it, and what kind of equipment is used for this purpose.

What is meant by the dielectric loss tangent?

If electric insulating material is placed into the electric field, energy dissipation will be observed therein. This energy is known as dielectric loss. The amount of dissipated energy is expressed in terms of the dielectric loss tangent.

The physical meaning of the dielectric loss tangent is as follows.

Imagine a dielectric to be a dielectric between the plates of a capacitor brought into a capacitive circuit.

If you measure the displacement angle between the current and the voltage of this circuit, it will be less than 90°. The angle that you need to complement the phase displacement angle up to 90° is known as the δ angle or the dielectric loss angle.

The energy loss in the capacitor characterizes the dielectric loss tangent which is numerically equal to the ratio between active and reactive power at the sinusoidal voltage of certain frequency.

Why is it important to determine the dielectric loss tangent of transformer oil and what is the difference in the informative value of measuring this parameter and the breakdown voltage? Breakdown voltage is the maximum voltage that must be applied to transformer oil in order to cause an instantaneous breakdown. In a strict sense, breakdown voltage is a characteristic of oil on the spot. The dielectric loss tangent is a more flexible parameter, because it allows:

  1. evaluating the purification degree of new oils at a petroleum refinery during production and the readiness thereof for feeding into high-voltage equipment;
  2. for oils in use, the dielectric loss tangent allows estimating how much longer they can be used in high-voltage equipment before change or regeneration.

Therefore, dielectric loss testing equipment should be present in the laboratories of both petroleum companies that produce electrical insulating oils and the companies dealing with maintenance and repair of transformers.

What does the dielectric loss tangent depend on?

The dielectric loss tangent value depends on the following factors;

  • type of dielectric;
  • quality of dielectric;
  • ambient temperature (at room temperature, the dielectric loss tangent is usually minimal);
  • AC frequency at which measurement is taken (as the frequency goes up, the dielectric loss tangent value increases).

The quality of transformer oil as a dielectric deteriorates which results from long-term storage and long-term use. Among the operational factors leading to increased dielectric loss tangent of transformer oil, we highlight moisturization and the presence of entrapped air. If the tangent rises with an increase in applied voltage, it means that the oil contains entrapped air. Under the influence of operational factors, the dielectric loss tangent can increase several times compared to the same indicator for fresh oil. Such increases must be timely tracked using the dielectric loss testing equipment.

How is the dielectric loss tangent of transformer oil measured?

Let’s discuss the operation principle of dielectric loss testing equipment. It is based on measuring the difference between the amplitudes and phases of signals obtained when the test sinusoidal voltage with the effective value of up to 2 kV is simultaneously applied to a reference capacitor and a measurement object represented by a measuring cell.

A measuring cell is a metal vessel consisting of two electrically insulated parts (internal and external electrodes) between which transformer oil is poured.

As a matter of fact, a measuring cell is an electrical capacitor the plates of which constitute internal and external electrodes. Test voltage is applied to the external electrode, and a desired signal is picked up from the internal electrode.

The amplitude and phase of the signal coming from the reference capacitor fall within the range of permissible tolerances and are considered constant.

The amplitude difference of the signals picked up from the reference capacitor and the internal electrode of the measuring cell is proportional to the dielectric permittivity of the liquid under study.

The phase difference between the signals picked up from the reference capacitor and the internal electrode of the measuring cell characterizes the dielectric loss tangent value.

TOR-3 oil tangent delta tester

GlobeCore has developed a dielectric loss tester known as TOR-3 which includes measuring the dielectric permittivity of insulating oils. The main advantages of the instrument are automatic measurements, precision, versatility, convenience, operational safety, and reliability.

The operation of TOR-3 instrument is controlled using a computer by giving commands to perform certain actions. A command to start measurements is given after feeding the oil into the measuring cell and connecting the instrument to the power mains. The instrument attains specified characteristics and starts to take the first values of the dielectric loss tangent and the dielectric permittivity thereafter.

The measurement tolerance of the dielectric loss tangent does not exceed one percent plus eight hundred thousandths, and that of dielectric permittivity — two percent. High measurement accuracy is achieved owing to new GlobeCore technologies used in developing the structure of a reference capacitor, as well as predetermined calibration of an empty measuring cell using a special software program.

It is not necessary to remove the cell when proceeding to test the next sample. It is enough to give a command from the computer to open the oil drain valve into a special tray. The tray oil is removed into a separate container, and the next sample is fed into the cell.

All electronic modules and parts are compactly placed in a single housing; thus, none of the instrument overall dimensions exceeds forty-five centimeters, and the weight is not greater than five and a half kilograms. Owing to compactness and light weight, and the handles integrated into the housing, TOR-3 instrument can be easily moved on the desk or carried inside the laboratory.

A microprocessor, a digital-to-analog converter, and a high-voltage amplifier contained in the instrument allow generating a test signal of any shape and operating in a wide range of amplitudes. Therefore, TOR-3 is versatile and can be used to measure the dielectric loss tangent according to standards with different test voltage requirements.

The operational safety of the oil tangent delta tester is achieved by making the housing and the top layer of the measuring cell cover from durable insulating material. It secures laboratory staff against electric shock.

The presence of TOR-3 dielectric loss tester in your laboratory allows solving two problems at once: to determine the suitability of new oil for feeding into the transformer, and to find out how long the oil can be used without change or regeneration. It enhances the operation reliability of transformers and eliminates the emergencies associated with malfunctions of the insulation system. If you follow the operating rules, you can be sure that these problems will be successfully solved using one instrument for at least ten years.

    Leave Your Request


    • Home
    • Products
    • Dealers
    • Tech School
    • Contacts

    ® Copyright by - 2025 © GlobeCore

    GlobeCore, Sadovskogo 14, Poltava, Ukraine, 36034

    This website uses cookies to improve your experience. By continuing to browse, you agree to our use of cookies. Read more in our Privacy Policy.